CRSI (Climate Resilience Screening Index) – Development and Application

Kevin Summers, Lisa Smith, Linda Harwell & Kyle Buck
U.S. Environmental Protection Agency
Office of Research and Development

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or the U.S. Environmental Protection Agency. The EPA does not endorse any commercial products, services, or enterprises.
RESILIENCE

The capacity to prepare for disruptions, recover from shocks and stresses, and adapt and grow from a disruptive experience.

#RebuildBETTER
The Climate Resilience Screening Index (CRSI) is a composite measure developed to characterize the resilience of socio-ecological systems in the context of governance and risk to natural hazard events.

- Comprised of five domains (Risk, Governance, Society, Built Environment, and Natural Environment)
- Represented by 20 indicators
- Calculated from 117 metrics

Intended Use: Help communities target potential areas for resources to increase relative resilience given specific hazard profiles.
CRSI Domains and Indicators

<table>
<thead>
<tr>
<th>Domain Description</th>
<th>Indicator Description (# of metrics)</th>
<th>Domain Description</th>
<th>Indicator Description (# of metrics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Risk domain represents the characteristics of a place that contribute to a level of exposure or loss resulting from specific hazards.</td>
<td>Exposure</td>
<td>The Natural Environment domain describes resilience of natural and managed ecosystems through measures of extent and condition.</td>
<td>Extent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Climate Resilience Screening Index (CRSI) is a composite measure developed to characterize the resilience of socio-ecological systems in the context of governance and risk to natural hazard events.

- Comprised of five domains (Risk, Governance, Society, Built Environment, and Natural Environment)
- Represented by 20 indicators
- Calculated from 117 metrics

Intended Use: Help communities target potential areas for resources to increase relative resilience given specific hazard profiles.
Domain Overviews

- **Risk Domain**: Characteristics of a place that contribute to level of exposure or loss resulting from specific hazards
 - **Exposure**: Probability of hazard occurrence over full spectrum of natural hazards (13) and technological hazards (5)
 - **Loss**: Historical loss of life and property (3)

- **Governance Domain**: Collaboration of government agencies and NGOs and private citizens towards joint objectives with a system of rules and regs for increasing community resilience
 - **Community Preparedness**: County and community resilience strengthening and structure hazard mitigation (2)
 - **Personal Preparedness**: Individual or household activities that help protect personal property for acute climate events (2)
 - **Natural Resource Conservation**: Protection of natural resources (1)
What is CRSI?

- The Climate Resilience Screening Index (CRSI) is a composite measure developed to characterize the resilience of socio-ecological systems in the context of governance and risk to natural hazard events.
- Comprised of five domains (Risk, Governance, Society, Built Environment, and Natural Environment)
- Represented by 20 indicators
- Calculated from 117 metrics

Intended Use: Help communities target potential areas for resources to increase relative resilience given specific hazard profiles.
Domain Overviews

• Society Environment Domain: All human aspects of a community except built environment (include economic, demographic and social interactions)
 – Demographics: General vulnerability attributes of a community’s population (5)
 – Economic Diversity: Factors associated with economic stability and ability to monetarily respond and recover (2)
 – Health Characteristics: Factors associated with healthcare access, special health vulnerability populations, and specific health problems (9)
 – Trace and Labor Services: Appropriate construction skills needed to provided for accelerated recovery (8)
 – Safety and Security: Emergency and civil services (4)
 – Social Cohesion: Social bonds and willingness of society members to cooperate (4)
 – Social Services: Critical services for recovery unrelated to labor/trade, safety/security and civil control (15)
 – Socio-Economics: Employment opportunities and issues associated with personal economics (2)
The Climate Resilience Screening Index (CRSI) is a composite measure developed to characterize the resilience of socio-ecological systems in the context of governance and risk to natural hazard events.

- Comprised of five domains (Risk, Governance, Society, Built Environment, and Natural Environment)
- Represented by 20 indicators
- Calculated from 117 metrics

Intended Use: Help communities target potential areas for resources to increase relative resilience given specific hazard profiles.
Domain Overviews

- **Built Environment Domain:** Man-made surroundings that support human activities and reflect structural vulnerability and critical functions for recovery
 - Communications Infrastructure: Communications Continuity (7)
 - Utilities Infrastructure: Relative availability of drinking water, sewer and power services (3)
 - Transportation Infrastructure: Transportation flow continuity (6)
 - Housing Characteristics: Home overcrowding, housing density, type of housing and structural condition of housing (5)
 - Vacant Structures: Number of vacant buildings (3)

- **Natural Environment Domain:** Resilience of natural and managed ecosystems
 - Extent: Proportion of land that is undeveloped and acreage in each ecosystem type (9)
 - Condition: Ecological condition of each ecosystem type (9)
<table>
<thead>
<tr>
<th>Domain Description</th>
<th>Indicator Description (# of metrics)</th>
<th>Domain Description</th>
<th>Indicator Description (# of metrics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Risk domain represents the characteristics of a place that contribute to a level of exposure or loss resulting from specific hazards.</td>
<td>- Exposure: The probability of hazard occurrence across a full spectrum of natural hazard events as well as additional technological hazards that may coincide with, or be exacerbated by such events (18)</td>
<td>The Natural Environment domain describes resilience of natural and managed ecosystems through measures of extent and condition.</td>
<td>- Extent: the proportion of land that is undeveloped and includes the spatial extent or acreage of each ecosystem type (9 metrics)</td>
</tr>
<tr>
<td>The Governance domain describes the collaboration of government agencies and Non-Governmental Organization (NGOs) or private citizens towards joint objectives within a system of rules and regulations in context of increasing community resilience.</td>
<td>- Loss: Characteristics of vulnerability represented through historical loss of life and property (including crops) associated with specific hazard events (3)</td>
<td>- Community Preparedness: County and community resilience strengthening and structure hazard mitigation (2 metrics)</td>
<td>- Condition: Condition-represents the ecological condition of the ecosystems identified in the extent indicator (9 metrics)</td>
</tr>
<tr>
<td>The Built Environment domain describes the man-made surroundings that support human activities and reflects structural vulnerability and critical functions needed for recovery from hazard events.</td>
<td>- Natural Resource Conservation: Protection of natural resources from anthropogenic activities (1 metric)</td>
<td>- Personal Preparedness: Individual or household activities that help protect personal property from acute climate events (2 metrics)</td>
<td>- Demographics: Demographics-measures that reflect general vulnerability attributes of a community’s general population (5 metrics)</td>
</tr>
<tr>
<td></td>
<td>- Communication Infrastructure: communications continuity (7 metrics)</td>
<td>- Utilities Infrastructure: Measures of the relative availability of drinking water, sewer and power services based on number and location (3 metrics)</td>
<td>- Economic Diversity: Diversity-represents factors associated with economic stability and ability to monetarily respond and recover from hazard events (2 metrics)</td>
</tr>
<tr>
<td></td>
<td>- Housing Characteristics: addresses issues of home overcrowding, housing density, type of housing and structural condition (5 metrics)</td>
<td>- Vacant Structures: measures of the number of vacant business structures residences and other vacant buildings (3 metrics)</td>
<td>- Health Characteristics: factors associated with healthcare access, special health vulnerability populations, and specific health problems (5 metrics)</td>
</tr>
<tr>
<td></td>
<td>- Transportation Infrastructure: represents transportation flow continuity described with related measures for bridges, roads and airports (6 metrics)</td>
<td>- Safety and Security: addresses the provisioning of emergency and civil services (4 metrics)</td>
<td>- Trade and Labor Services: represents measures of the appropriate construction skills needed to provide for accelerated recovery (8 metrics)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Social Cohesion: Cohesion-represents social bonds and the willingness of members of a society to cooperate with each other in the wake of natural hazard events (4 metrics)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Social Services: Services-characterizes services critical for recovery and includes the availability of services unrelated to laborforce, emergency services and civil control (15 metrics)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Socio-economics: Socio-economics-relates to employment opportunity and issues associated with personal economics, primarily level of income (2 metrics)</td>
<td></td>
</tr>
</tbody>
</table>
Calculating Basic Resilience

- Ratio of Governance and Risk Domains (G/R)
- Basic Resilience scores were calculated for each county as follows:

 Basic Resilience = Gov/Risk

![Graph showing distribution of Basic Resilience scores with frequency and cumulative percent of counties]
Hazard Exposure Score vs. Governance Score – All Counties

Using All County-Level Domain Scores
Calculating CRSI

- Society, Natural Environment and Built Environment domain scores for each county were first adjusted to become factors in the county level CRSI calculation as follows:

\[
\text{Adj. County Domain Score} = \frac{(\text{County Domain Score} - \text{Median Domain Score for all counties})}{\text{(Median Domain Score for all counties)}}
\]

- CRSI scores were then calculated for each county as follows:

\[
\text{CRSI} = \text{Gov} + (\text{Gov} \times \text{Adj Society}) + (\text{Gov} \times \text{Adj Built}) + (\text{Gov} \times \text{Adj Natural})
\]
National CRSI Scores

<table>
<thead>
<tr>
<th>National Average</th>
<th>Risk</th>
<th>Governance</th>
<th>Built Environment</th>
<th>Natural Environment</th>
<th>Society</th>
<th>CRSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Including Alaska</td>
<td>0.29590</td>
<td>0.59674</td>
<td>0.39320</td>
<td>0.41333</td>
<td>0.51561</td>
<td>2.71349</td>
</tr>
<tr>
<td>Excluding Alaska</td>
<td>0.29758</td>
<td>0.59575</td>
<td>0.39262</td>
<td>0.41182</td>
<td>0.51587</td>
<td>2.37534</td>
</tr>
</tbody>
</table>
EPA Region 8

CRSI and Domain Scores – Region 8

EPA Region 8

Risk

Governance

Society

Built Environment

Natural Environment

CRSI 6.09

Domain Score (lighter shade bar)/Median Adjusted Score(darker shade bar)
Maps of Region 8 CRSI and Domain Scores

Region 8
Risk Statistics – Region 8

Three Primary Exposures:
1. Drought
2. Extreme Temps – Highs
3. Extreme Temps – Lows

Risk Range:
High – Meade, SD – 4.14
Low – Daniels, MT – 1.42
Mean – 2.54

Natural Exposures:
- Drought: 37%
- Extreme High Temps: 18%
- Extreme Low Temps: 16%
- Landslide: 9%
- Hail: 5%
- Wildfire: 1%
- Earthquake: 4%
- Inland Flood: 6%
- High Wind: 4%

Technological Exposures:
- TRI: 37%
- Superfund: 62%
- RCRA: 1%
- Natural Exposure: 99%

Losses:
- Natural Loss: 45%
- Dual-Benefit Loss: 48%
- Developed Loss: 7%
Climate Resilience Screening Index: Future Applications

- Adaptation of CRSI to Superfund sites
- Retrospective Analyses of Hurricanes of 2017
- Cases Studies for CRSI at Community Level
- Working with Regions to Assess Research Needs to Support Improvement of Resilience
- Evaluation of Relationship between Well-Being and Resilience
SUMMARY

- National assessments are needed to address widespread socio-ecological impacts of natural hazard events from a policy perspective.
- Assessments for geographically specific areas are useful in identifying potential strengths and weaknesses in resilience aspects given similar hazard profiles and governance structures (counties).
- As constructed, CRSI allows for a drill down not only in scale, but also at the indicator level which could be useful for targeting resources to increase resilience.
- CRSI provides a “starting point” for resilience assessments. Locally held data should be used to supplement CRSI characterizations.
Available Manuscripts and Reports

THANK YOU

CHALLENGES AHEAD